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Waterlike anomalies for core-softened models of fluids: Two-dimensional systems

A. Scala,* M. Reza Sadr-Lahijany, N. Giovambattista, S. V. Buldyrev, and H. E. Stanley
Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215

~Received 13 October 2000; published 29 March 2001!

We use molecular-dynamics simulations in two dimensions to investigate the possibility that a core-softened
potential can reproduce static and dynamic anomalies found experimentally in liquid water:~i! the increase in
specific volume upon cooling,~ii ! the increase in isothermal compressibility upon cooling, and~iii ! the increase
in the diffusion coefficient with pressure. We relate these anomalies to the shape of the potential. We obtain the
phase diagram of the system and identify two solid phases: a square crystal~high-density phase! and a
triangular crystal~low-density phase!. We also discuss the relation between the anomalies observed and the
polymorphism of the solid. Finally, we compare the phase diagram of our model system with experimental
data, noting especially the line of temperatures of maximum density, the line of pressures of maximum
diffusion constant, and the line of temperatures of minimum isothermal compressibility.
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I. INTRODUCTION

Most liquids contract upon cooling and become more v
cous with pressure. This is not the case for the most imp
tant liquid on earth, namely, water. For at least 300 year
has been known that the specific volume of water at amb
pressure starts to increase when cooled belowT54 °C @1#. It
is perhaps less known that the viscosity of water decrea
upon increasing pressure in a certain range of temperat
@2#. Moreover, in a certain range of pressures, water exhi
an anomalous increase of compressibility, and hence of d
sity fluctuations, upon cooling. These anomalies are not
stricted to water but are also present in other liquids@3–5#.

In order to investigate these anomalies, we utilize co
puter simulation of a class of potentials called ‘‘cor
softened’’ potentials, first introduced by Stell, Hemmer, a
their co-workers@6#. We define a core-softened potential a
spherically symmetric potential that has a region of nega
curvature in its repulsive core@7#. An example of a discrete
and of a smooth core-softened potential is shown in Fig
Debenedettiet al. noted that a ‘‘softened core’’ can lead to
density anomaly@8#, i.e., one of the anomalies found in wa
ter. Furthermore,ab initio calculation@9# and inversion of
the experimental oxygen-oxygen radial distribution functi
reveals that a ‘‘core-softened’’ potential can be considere
realistic first-order approximation for the interaction betwe
water molecules@10#.

Although directional bonding is certainly a fundamen
issue in obtaining quantitative predictions for networ
forming liquids like water, it could be the case that cor
softened potentials can be the simplest framework to un
stand the physics of those anomalies. Here we demonst
by means of numerical simulations ford52, that the core-
softened potential can lead to anomalies in the density, in
compressibility, and in the viscosity. We also offer an exp
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nation for the occurrence of these three anomalies in term
the shape of the potential.

The paper is organized as follows. In Sec. II, we defi
the potentials studied. In Sec. III, we describe the method
simulations employed. In Sec. IV, we present the results
garding the density anomaly. In Sec. V, we discuss the r
tion of the structures in the solid phase and the den
anomalies. In Sec. VI, we present the results for the diffus
anomaly and give an explanation of such an anomaly
terms of free volume. In Sec. VII, we present the results
the compressibility anomaly. Finally, we present the ove
phase diagram in Sec. VIII and our conclusions and co
ments in Sec. IX.

II. DISCRETE AND SMOOTH MODELS

A. Discrete potential

The core-softened potentials that we study are shown
Fig. 1 as a function of particle pair distancer. The discrete
potential is composed of a hard core of diametera that has a

er FIG. 1. Discrete~broken line! and smooth~solid line! forms of
the core-softened potentialu(r ) studied here. Length paramete
a,b,c and energy parameterse,l are shown.
©2001 The American Physical Society02-1
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repulsive shoulder of widthb2a at depthle and an attrac-
tive well of width c2b and depthe. The form of the func-
tion is thus

u~r !55
`, 0,r ,a

2le, a,r ,b

2e, b,r ,c

0, r .c.

~1!

All of the results reported here for the discrete poten
are fora51, b5A2, c5A3, e52, andl50.5.

In the case of water, one can attribute the larger dista
r 5b to hydrogen bonding, for which the system acquire
low energy and expands at the same time. The inner dista
r 5a, on the other hand, corresponds to a nonhydro
bonded energy state. Recent studies have proposed this
of potential as the interaction between clusters of stron
bonded pentamers of water@11#. This type of interaction is
expected to reproduce the density anomaly. The reaso
that at low pressures and at low temperatures, nea
neighbor pairs sit in the outer well, which has a lower e
ergy. By increasingT, in order to gain more entropy, th
system explores a larger portion of the configurational spa
which is not probed at lower temperatures. This includ
penetrating the ‘‘soft’’ core (a,r ,b), which on average
can lead to anomalous contraction upon heating.

B. Smooth potential

While the discrete potentialu(r ) is appropriate for deriv-
ing the closed form of the equation of state in one dimens
~1D! @5,12,13#, for simulations it is not necessarily the mo
appropriate. As we will show in the next section, the smo
version of the potentialu8(r ) requires a different method o
simulation from that ofu(r ). The potentialu8(r ) we use is
obtained by adding a Gaussian well to the Lennard-Jo
potential and has the form

u8~r !54e8F S s

r D r 122S s

r D r 6G
2l8e8expF2wnS r

s
2

r 0

s D nG ~2!

for r<r c and vanishes forr .r c . We use e851.0, l8
51.7, w55.0, r 051.5, s51, andn52 in order to mimic
the shape of the discrete potential, as shown in Fig. 1.

III. MOLECULAR-DYNAMICS SIMULATION METHODS

The method of simulation in both the discrete and
smooth cases is the molecular-dynamics~MD! method. Our
simulations are performed in 2D with periodic bounda
conditions. The overall qualitative results of the simulatio
for the discrete and the smooth potential are similar, wh
the quantitative results differ. In what follows, we explain
more detail the MD method used in each case.
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A. Constant-volume simulation of the discrete potential

For the discrete potential@Eq. ~1!#, we use the collision
table technique@14# for N5896 disks. To each disk we as
sign a radiusa/2. We define the densityr to be the ratio of
the total area of all the disks to the area of the box. Energ
are measured in units ofe, temperature is calculated in unit
of energy divided by the Boltzmann constant,e/kB , and the
mass of the particle is set atm51.

The average pressure is calculated using the virial eq
tion for step potentials@14#

P5K 1

VFK1
1

2dt (
i , j

8 m~vW i82vW i !•~rW i2rW j !G L , ~3!

whereK5( imvW i
2/2 is the total kinetic energy,N is the num-

ber of particles,( i , j8 is the sum over the particle pairs (i , j )

undergoing a collision in the time intervaldt, vW i andvW i8 are
the velocities of the particlei before and after a collision, an
rW i andrW j are the positions of the particlesi and j undergoing
a collision. The angle brackets denote average over the
period of data aquisition.

We simulate state points along constant-volume pa
For thermalization, we use the Berendsen method of res
ing the kinetic energy@14#. We thermalize the system for 105

time units, which corresponds to;106 collisions per par-
ticle, and then acquire data for 106 time units corresponding
to ;107 collisions per particle.

B. Constant-volume simulation of the smooth potential

For the smooth version of the potential@Eq. ~2!#, we use
the velocity Verlet integrator method@14# for a system of
N52500 disks. We record the results in reduced units
which s, e8, m, andkB are all unity. We chooser c52.5, and
the length of each MD time stepdt50.01. We assign to eac
particle a radius 21/6, which corresponds to the minimum o
the Lennard-Jones potentials, and we define the densityr to
be the ratio of the total area of all the disks to the area of
box.

In order to achieve a preset temperature, we use the
endsen method of rescaling the velocities@14#, resulting in
the time dependence

T~ t !5T`1@T~0!2T`#e2t/t, ~4!

wheret is a preset time constant@14#. Typical values oft
are around 104dt.

We first thermalize the system for a timeDt'10t, and
we ensure that equilibrium is attained by monitoring the tim
dependence of observables likeT, P, and the potential energy
U. Then we acquire data, running the system for an ad
tional period of time at constant NVE conditions~microca-
nonical ensemble!. We calculateP andT and we consider the
system to be in equilibrium only when the fluctuations
these quantities are less than 1% of their average values.
acquisition time is chosen to be more than the time it ta
for the system to equilibrate and is typically (53104)dt to
(23105)dt.
2-2
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WATERLIKE ANOMALIES FOR CORE-SOFTENED . . . PHYSICAL REVIEW E63 041202
The average simulation speed on Boston University’s S
Origin 2000 supercomputer was approximately 10ms per
particle update. Each of the state points we study requ
between 8 and 16 h on one processor, and thus over 10
total computational time was utilized.

C. Constant-pressure simulation of the smooth potential

In order to check that our results are not biased by s
problems as phase coexistence, which can affect cons
volume simulations, we also perform constant-press
simulations in the case of the smooth potential. Consta
pressure simulations allow us to determine more accura
the locations of the freezing line and the density maximu
We use the feedback method proposed by Broughton@15#,
where the dimensions of the box and the positions of
particles are rescaled to obtain the desired pressureP. The
amount of rescaling depends on the difference between
present pressureP(t) and the desired pressureP.

Using the Broughton method and the Berendsen meth
we gradually drive the system to the desiredP andT, while
simulating under readjustingV andE conditions. We choose
pressure and temperature tolerancesdP anddT less than 1%
of the desiredP and T. Once P(t) and T(t) reach values
within the rangeP6dP andT6dT, we stop thermalization
and pressurization. If the system stays within these limits
an interval of time of the same order of time needed to re
the desiredP andT, we conclude that the system has equ
brated, turn off the thermalization and pressurization, a
start collecting data. During this collection period, we mo
tor temperature and pressure to check that their average
ues coincide with the desired ones within an accuracy of 1
For our results, the timeDt needed to reach equilibrium i
usually of the order of 500 000 stepsdt, so Dt'5000 in
Lennard-Jones units. Data are acquired over a period
10Dt. We test our code by simulating a Lennard-Jones s
tem of 2304 disks and comparing the results with the pre
ously known phase diagram of a 2D Lennard-Jones syst

IV. DENSITY ANOMALY

The temperature of density maximum (TMd) line is the
border of the region in theP-T plane where the liquid ex

FIG. 2. Isobars for the smooth potential.
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pands upon cooling. Figure 2 shows a set of different isob
for the smooth potential. TheTMd line corresponds to the se
of maxima along those isobars.

In the case of constant-volume simulations, theTMd line
corresponds to the minima along constant-volume pathsP
versusT graphs of Fig. 3! since for any thermodynamic
quantityX

S ]X

]TD
V

5S ]X

]TD
P

2
~]X/]P!T~]V/]T!P

~]V/]P!T
. ~5!

By substitutingX5P, we find

S ]P

]T D
V

5
aP

KT
, ~6!

where

aP[V21S ]V

]TD
P

~7!

is the thermal expansion coefficient and

FIG. 3. Isochores for the smooth potential~left panel! and the
discrete potential~right panel!.
2-3
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A. SCALA et al. PHYSICAL REVIEW E 63 041202
KT[2V21S ]V

]PD
T

~8!

is the isothermal compressibility. Taking a derivative of E
~5!, usingaP50 at theTMd line, we find

S ]2P

]T2D
V

5
V21~]2V/]T2!P

KT
. ~9!

Equations~6! and ~9! show that sinceKT is always posi-
tive and finite for systems in equilibrium not at a critic
point, a minimum along the isochore is equivalent to a mi
mum along an isobar, which is the density maximum po
TMd . Figure 3 shows the isochores for the smooth and
discrete potentials.

To confirm that we are investigating the liquid state p
of the phase diagram, we introduce a criterion to distingu
the liquid state from a frozen state. We determine the fre
ing line as the location of points where isochores overlap
this way, we establish an approximate location for the fre
ing line. Crossing this line from the liquid side, we find
sharp decrease in diffusivityD coinciding with the appear
ance of slowly decaying peaks ing(r ) as a function ofr,
which signals the build up of long-range correlations~Fig.
4!, which is a characteristic of 2D solids.

We confirm the above criterion adopted to locate
freezing lines by using isobaric simulations for the smo
potential. Indeed, they show a sharp change of density
correspondence with the estimated freezing line at high p
sures~Fig. 5, lower panel!. The presence of a hysteresis loo
~Fig. 6! suggests that the liquid-solid transition is first ord
however, by lowering the pressure, the loops become
and less pronounced and eventually disappear, elimina
the possibility of a hexatic second-order transition@16#.

FIG. 4. Radial distribution function at high and low temper
tures, along theP50.48 isobar for the smooth potential. Notic
how, by loweringT, long-range correlations develop@g(r )51 if
particles at distancer are uncorrelated# and more particles are ex
pelled from inside the soft corer;1.1 into the attractive well
r;1.5 ~inset!. As the average interparticle distance is growing up
cooling, the system is expanding and there is hence a den
anomaly.
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For a few state points near the freezing line, we ha
checked our results by simulatingN52500 particles in rect-
angular boxes with aspect ratioA3/2 (Lx5A3/2Ly , with
Lx3Ly[L0

2) which accommodate triangular lattices pe

ity

FIG. 5. Phases for the core-softened model~smooth potential!.
The upper panel shows a snapshot of the liquid phase and snap
of different types of crystals for the solid phase at low pressu
where the freezing line is negatively sloped, and at high press
where the freezing line is positively sloped. Lower panel shows
density jumps along isobars; note that the low-pressure iso
shows a density anomaly before jumping to a low-density solid

FIG. 6. Hysteresis loop near the freezing line for a high-press
isobar ~smooth potential!. The continuous line is obtained upo
heating, the dashed line upon cooling.
2-4
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WATERLIKE ANOMALIES FOR CORE-SOFTENED . . . PHYSICAL REVIEW E63 041202
fectly. This eliminates any possible artificial hindrance
crystallization that may arise from the asymmetry impos
by the shape of the square box.

For water, the locus of theTMd line in the P-T phase
diagram is of special interest to distinguish between differ
scenarios proposed to explain its anomalies@17–19#. In Fig.
7, we see that theTMd line changes from negative slope
high pressures to positive slope at low pressures. T
change in slope is similar to what is observed in simulat
model potentials of water like SPC/E or ST2@17,20#. These
results suggest that the change in slope can be a ge
phenomenon stemming from the general core-softened f
of the interaction in the simulation.

V. STRUCTURES IN THE LIQUID AND SOLID PHASES

Figure 5~upper panel! shows the different phases of th
system. In our simulations, we see that theTMd line is lo-
cated in the region of pressures where the freezing lin
negatively sloped, as in water. A density anomaly and
negatively sloped melting line are often associated@3,21#.
This has proven to be the case for substances like water~Fig.
8! and tellurium@5# and for some computer models@12,22#.
This association is plausible since the isobaric thermal
pansion coefficientaP is related to the cross fluctuations
volume and entropy as

FIG. 7. Phase diagram with theTMd , PMD , KTmin
, and freezing

line for the smooth potential~left panel! and discrete potential~right
panel!.
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aP}b^dVdS&. ~10!

Approaching a freezing line, we expect local-density flu
tuations to have structures similar to the neighboring solid
they are going to trigger the liquid-solid transition. On th
other hand, the Clausius-Clapeyron relation for the slope
the freezing line

dP

dT
5

DS

DV
~11!

implies that, if the freezing line is negatively sloped, t
solid, which has a lower entropy than the liquid, will have
higher specific volume. Therefore, if the fluctuations in t
liquid are ‘‘solidlike,’’ aP @Eq. ~10!# will turn out to be
negative.

To distinguish different local structures in the liquid, w
plot the radial distribution functiong(r ) for different pres-
sures and temperatures~Fig. 4!. As expected, at low pres
sures cooling expels particles from the core, while increas
pressure at fixed temperature has the opposite effect.

Since our system is two-dimensional, we can use vis
inspection to develop an intuitive picture of the possible
cal structures~Fig. 5, upper panel!. If the fluctuations in the
liquid are ‘‘solidlike,’’ near the freezing line we expect t
see local structures that resemble the structure of the ne
solid.

We find that at lowP andT, the system is frozen with a
hexagonal structure~Fig. 9, lower left panel!. A ‘‘snapshot’’
of the system along the same isobaric line~Fig. 9, lower right
panel! shows clearly that local patches with hexagonal or
are present in the liquid phase near the freezing line. We
refer to this structure as the ‘‘open structure.’’ Similarly,
high pressures the local patches in the liquid phase nea
freezing line~Fig. 9, upper right panel! resemble the struc
ture of the system when it is frozen at lowT and highP ~Fig.
9, upper left panel!. We will refer to this as the ‘‘dense

FIG. 8. Sketch of the phase diagram of water. The portion of
TMd line that is to the left of the melting line corresponds to expe
ments in the supercooled region of water. Notice that the prese
of a density anomaly in the region of the negatively sloped melt
line can occur in the metastable phase of the liquid. Data are
tained from Ref.@2#.
2-5
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A. SCALA et al. PHYSICAL REVIEW E 63 041202
structure.’’ For the open structures, each particle has
neighbors sitting in the deepest well, and the softened c
behaves as the effective core for the particles. The de
structure is the next energetically favorable local arran
ment, with four neighbors in the external well and four in t
softened core, for which the effective core is the hard co

VI. DIFFUSION ANOMALY

We next study the diffusion anomaly, which is anoth
surprising feature of water. While for most materials diff
sivity decreases with pressure, liquid water has an oppo
behavior in a large region of the phase diagram@2# ~Fig. 8!.
The pressures where the system has a maximum diffus
along isotherms define the line of the pressure of maxim
diffusivity, PMD .

We observe that our core-softened potential reprodu
this anomaly. We first measure the mean-square displ
ment ^Dr 2(t)&[^@r (t1t0)2r (t0)#2& and then the diffusion
coefficient using the relation

D5
1

2d
lim
t→`

^Dr 2~ t !&
t

. ~12!

We measurêDr 2(t)& by averaging over the starting timet0
in Eq. ~12!. We find that there is a region of the phase d
gram in whichD increases upon increasingP ~Fig. 10!.

In order to understand the diffusion anomaly, we first n
that, for normal liquids,D decreases withP because upon
increasingP the density increases and molecules are m

FIG. 9. Snapshots of the system~discrete potential! in the solid
phase at high pressure~upper left! and low pressure~lower left!,
and in the liquid phase at high pressure~upper right! and low pres-
sure~lower right!. Moving along an isobar, patches of local ord
similar to the low-temperature solid develop. At high pressure,
average distance between particles~which is the radius of the disk!
is of the order of the hard core, while in the low-pressure solid,
distance between particles is larger, of the order of the softe
core.
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constrained. As a result, the viscosity increases and hencD
decreases. In the case of water, the anomaly can be relat
the fact that increasing pressure~and hence density! breaks
hydrogen bonds, which in turn increases the mobility of t
molecules. We present a more general explanation that
apply equally to our radially symmetric core-softened int
action, which does not possess any directional bonds sim
to hydrogen bonds. The low-energy interparticle state ar
'b plays the role of nondirectional bond. Note thatD is
proportional to the mean free path of particles, which
creases with the free volume per particlev free[v2vex,
wherevex is the excluded volume per particle resulting fro
the effective hard core. At low temperatures,vex for the
dense structure is proportional to the areaa2 of the hard core,
while for the open structure it is proportional to the areab2

of the soft core. IncreasingP decreasesv, which is the main
effect in normal liquids. For the core-softened liquid, on t
other hand, increasingP can also decreasevex by transform-
ing some of local open structures to dense structures. S
both Dv and Dvex decrease withP and sinceDv free5Dv
2Dvex, the effect ofP on D depends on whetherDv or
Dvex dominates. The anomalous increase inD along the iso-
therms near the freezing line is a sign of the dominance
theDvex term. Thus the anomaly inD must disappear near
certain pressure above which the average distance betw

e

e
d

FIG. 10. Diffusion coefficientD in the liquid phase for the con
tinuous potential~left panel! and the discrete potential~right panel!
along various isotherms. Lines are intended as a guide for the
Notice the anomalous sections of the graph, where (]D/]P)T.0.
2-6
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WATERLIKE ANOMALIES FOR CORE-SOFTENED . . . PHYSICAL REVIEW E63 041202
particles corresponds to the dense structure, and as a r
the contribution of the open structure tovex is negligible.

We verified this in our simulation by observing a corr
spondence between the disappearance of the diffu
anomaly and the disappearance of the peak ing(r ), corre-
sponding to the open structure that is observed in real wa

VII. ISOTHERMAL COMPRESSIBILITY

In order to investigate the anomaly in isothermal co
pressibilityKT , we calculateKT at each state point using th
data in Fig. 3. In the smooth potential case, we verify th
results using

KT5 lim
q→0

S~q!

nkBT
~13!

as an alternative method@23#, wheren is the number density
of the system andS(q) is the structure function and is relate
to the pair correlation function via

S~q!511nE eiq•xg~x!dx. ~14!

FIG. 11. Averaged pair distribution function for the smooth p
tential at P51.0,T50.7 ~upper panel!. The structure function
~lower panel!, multiplied by the factor 1/nkBT, derived by integrat-
ing g(r ), wherekB is the Boltzmann constant. Theq→0 limit of
this function givesKT , which is around 0.1 in this case.
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We first calculateg(r ) for each state point averaging ove

all thermalized configurations. We then perform numeri
integration using Eq.~14! to find S(q), and finally we ex-
trapolateS(q) to q50 and substitute in Eq.~13! to find KT .
We show an example of the graphs forg(r ) and the resulting
S(q) @normalized by the extra factors in Eq.~13!# in Fig. 11.
From the lowq tail of the curve, we find the limiting value
using Eq.~13!.

We graphKT along isobars, as shown in Fig. 12. For lar
T, the KT decreases upon increasingP. For smallT, the be-
havior is the opposite and the compressibility anomaly
curs. As seen for all isobars shown in Fig. 12~except a
low-pressure one!, KT increases by loweringT.

VIII. PHASE DIAGRAM

In water, theTMd line is negatively sloped for positive
pressures. For several models that mimic water behavior,
found that theTMd line has a reentrant shape, changing slo
at low or negative pressures@3#. In our simulations, we find
such a reentrantTMd line; the change of slope of theTMd
happens at positive pressures in the smooth version an
negative pressures in the discrete case~Fig. 7!.

FIG. 12. Isothermal compressibility along isobars for the co
tinuous potential~left panel! and for the discrete potential~right
panel!, computed directly from the numerical values ofP(V,T).
2-7
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A. SCALA et al. PHYSICAL REVIEW E 63 041202
Moreover, we have graphed the location of the minimu
KT point along each isobar; the locus of these points is ca
the minimum compressibility line (KTmin

). Sastry and co-

workers @18#, from basic thermodynamic arguments, sho
that ~i! the KTmin

line intersects theTMd line at its infinite

slope point, and~ii ! the compressibility must increase upo
cooling in the region to the left of a negatively slopedTMd

line. Our results are in agreement with both of these st
ments~Fig. 7!.

Theories relatingD to the entropy@24# predict that the
anomalous behavior (]D/]P)T.0 is related to an anomal
in the entropy (]S/]P)T.0. Due to the Maxwell relation
(]S/]P)T52(]V/]T)P , whenever there is a densit
anomaly, an entropy anomaly occurs, and the value of
tropy along isotherms reaches a maximum at theT Md line.

In Fig. 7, we also show thePMD line whereD reaches its
maximum with pressure. Notice that, for the continuous
tential, the maximum inD shifts to higherP with increasing
T. This trend is also observed in the SPC/E model of wa
@25# but is in contrast with the behavior of real water~Fig.
8!.
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IX. SUMMARY

We find that core-softened potentials reproduce the qu
tative behavior of water in many respects; in particular,
liquid phase of core-softened potentials can show both th
modynamic anomalies and dynamic anomalies. Moreover
in real water, the freezing line changes slope from a posi
value at high pressures to a negative value at low press
in the P-T phase diagram and more than one solid phas
present. The polymorphism of the solid phase and
anomalies in the liquid phase can be related to the possib
of different local structures due to the shape of the poten
The phase diagrams of the discrete and the smooth vers
of the core-softened potential are similar to that of real wa
but theTMd line is shifted into liquid phase and theKTmin

line
has a smaller slope. Only for the discrete potential do we fi
a PMD line with a negative slope.
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