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Waterlike anomalies for core-softened models of fluids: Two-dimensional systems
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We use molecular-dynamics simulations in two dimensions to investigate the possibility that a core-softened
potential can reproduce static and dynamic anomalies found experimentally in liquid (Jjatiee: increase in
specific volume upon coolingii) the increase in isothermal compressibility upon cooling, @nythe increase
in the diffusion coefficient with pressure. We relate these anomalies to the shape of the potential. We obtain the
phase diagram of the system and identify two solid phases: a square chjigtaldensity phageand a
triangular crystallow-density phase We also discuss the relation between the anomalies observed and the
polymorphism of the solid. Finally, we compare the phase diagram of our model system with experimental
data, noting especially the line of temperatures of maximum density, the line of pressures of maximum
diffusion constant, and the line of temperatures of minimum isothermal compressibility.
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[. INTRODUCTION nation for the occurrence of these three anomalies in terms of
the shape of the potential.

Most liquids contract upon cooling and become more vis- The paper is organized as follows. In Sec. I, we define
cous with pressure. This is not the case for the most importhe potentials studied. In Sec. Ill, we describe the methods of
tant liquid on earth, namely, water. For at least 300 years, isimulations employed. In Sec. IV, we present the results re-
has been known that the specific volume of water at ambierfiarding the density anomaly. In Sec. V, we discuss the rela-
pressure starts to increase when cooled bdlewt °C[1]. It tion of .the structures in the solid phase and the Qensity
is perhaps less known that the viscosity of water decreasé¥’omalies. In Sec. VI, we present the results for the diffusion
upon increasing pressure in a certain range of temperaturéfiomaly and give an explanation of such an anomaly in
[2]. Moreover, in a certain range of pressures, water exhibit: erms of free yql_ume. In Sec. \./”’ we present the results on
an anomalous increase of compressibility, and hence of derli-e compressmn.lty anomaly. Finally, we present the overall

. . . . hase diagram in Sec. VIII and our conclusions and com-
sity fluctuations, upon cooling. These anomalies are not r ments in Sec. IX
stricted to water but are also present in other liqyigls5]. T

In order to investigate these anomalies, we utilize com-
puter simulation of a class of potentials called “core-
softened” potentials, first introduced by Stell, Hemmer, and A. Discrete potential
their qo—workers{G]. We deﬂng a core—softened_ potential 458 The core-softened potentials that we study are shown in
spherically symmetric potential that has a region of negatlvq:ig. 1 as a function of particle pair distanceThe discrete

curvature in its repulsive collg]. An exgmple of a di;crgte potential is composed of a hard core of diameténat has a
and of a smooth core-softened potential is shown in Fig. 1.

Debenedettet al. noted that a “softened core” can lead to a
density anomaly8], i.e., one of the anomalies found in wa- F
ter. Furthermoreab initio calculation[9] and inversion of
the experimental oxygen-oxygen radial distribution function 0
reveals that a “core-softened” potential can be considered &
realistic first-order approximation for the interaction between
water molecule$10].
Although directional bonding is certainly a fundamental ™ -Ae
issue in obtaining quantitative predictions for network-
forming liquids like water, it could be the case that core-
softened potentials can be the simplest framework to under.
stand the physics of those anomalies. Here we demonstratt
by means of numerical simulations fde=2, that the core-
softened potential can lead to anomalies in the density, in the
compressibility, and in the viscosity. We also offer an expla-

II. DISCRETE AND SMOOTH MODELS

*Present address: Dipartimento di Fisica e Istituto Nazionale per FIG. 1. Discrete(broken ling@ and smooth(solid line) forms of
la Fisica della Materia, Universi@di RomalLa SapienzaP. le Aldo  the core-softened potentiai(r) studied here. Length parameters
Moro 2, 1-00185 Roma, ltaly. a,b,c and energy parametees\ are shown.
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repulsive shoulder of width—a at depth\ € and an attrac- A. Constant-volume simulation of the discrete potential
tive well of width c—b and depthe. The form of the func- For the discrete potentidEq. (1)], we use the collision
tion is thus table techniqué14] for N=896 disks. To each disk we as-
- 0<r<a sign a radiusa/2. We define the density to be the ratio of
' the total area of all the disks to the area of the box. Energies
—\Ne, a<r<b are measured in units @f temperature is calculated in units
um=y _ e, b<r<c (1) of energy divided by the Boltzmann constastkg, and the

mass of the particle is set at=1.
The average pressure is calculated using the virial equa-
tion for step potential§14]

0, r>c.

All of the results reported here for the discrete potential
are fora=1, b=12, c=/3, e=2, and\=0.5. P:<£
Y,

In the case of water, one can attribute the larger distance
r=b to hydrogen bonding, for which the system acquires a

low energy and expands at the same time. The inner diStan%ereK=EimJ?/2 is the total kinetic energyy is the num-

r=a, on the other hand, corresponds to a nonhydrogeg, particles | ; is the sum over the particle pairs, )
bonded energy state. Recent studies have proposed this form , AT o - >,
dergoing a collision in the time intervat, v; andv| are

of potential as the interaction between clusters of strongl!" " e AU
bonded pentamers of watk1]. This type of interaction is Ehe velgcmes of the particlebefore and after a collision, and
expected to reproduce the density anomaly. The reason s andr; are the positions of the particlegndj undergoing
that at low pressures and at low temperatures, nearesd collision. The angle brackets denote average over the total
neighbor pairs sit in the outer well, which has a lower en-period of data aquisition.
ergy. By increasingl, in order to gain more entropy, the =~ We simulate state points along constant-volume paths.
system explores a larger portion of the configurational spacé;or thermalization, we use the Berendsen method of rescal-
which is not probed at lower temperatures. This includesng the kinetic energy14]. We thermalize the system for 10
penetrating the “soft” core §<r<b), which on average time units, which corresponds te 10° collisions per par-
can lead to anomalous contraction upon heating. ticle, and then acquire data for ®.@me units corresponding

to ~10 collisions per particle.

1]

1« . .
K+ﬁ2 m(Ui,_Ui)'(ri_rj)D, (©)

B. Smooth potential
. . . . . ) B. Constant-volume simulation of the smooth potential
While the discrete potential(r) is appropriate for deriv-

ing the closed form of the equation of state in one dimension FOr the smooth version of the potentj&q. (2)], we use
(1D) [5,12,13, for simulations it is not necessarily the most the velocity Verlet integrator method4] for a system of
appropriate. As we will show in the next section, the smootiN=2500 disks. We record the results in reduced units in
version of the potentiall’ (r) requires a different method of Whicha, €', m, andkg are all unity. We choose;=2.5, and
simulation from that ofu(r). The potentiali’(r) we use is the length of each MD time steft=0.01. We assign to each

potential and has the form the Lennard-Jones potential and we define the densipyto

be the ratio of the total area of all the disks to the area of the
(a') 1 (a’) 6 box.

rA In order to achieve a preset temperature, we use the Ber-
endsen method of rescaling the velocitjdd], resulting in

u'(r)=4e€'

rro\" the time dependence
—)\'e’ex;{—wn(;—f) (2 P
T()=T..+[T(0)~T.]e”"", (4)
for r<r¢ and vanishes for>r.. We usee’'=1.0, A" \yherer is a preset time constafit4]. Typical values ofr
=1.7,w=5.0,ry=15, 0=1, andn=2 in order to mimic  gre around 155t.
the shape of the discrete potential, as shown in Fig. 1. We first thermalize the system for a tindet~10r, and

we ensure that equilibrium is attained by monitoring the time

dependence of observables likeP, and the potential energy

U. Then we acquire data, running the system for an addi-
The method of simulation in both the discrete and thetional period of time at constant NVE conditiofisicroca-

smooth cases is the molecular-dynam(igid) method. Our  nonical ensemb)eWe calculaté® and T and we consider the

simulations are performed in 2D with periodic boundarysystem to be in equilibrium only when the fluctuations of

conditions. The overall qualitative results of the simulationsthese quantities are less than 1% of their average values. The

for the discrete and the smooth potential are similar, whileacquisition time is chosen to be more than the time it takes

the quantitative results differ. In what follows, we explain in for the system to equilibrate and is typically X3.0%) 6t to

more detail the MD method used in each case. (2X 10°) 6t.

Ill. MOLECULAR-DYNAMICS SIMULATION METHODS
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FIG. 2. Isobars for the smooth potential.

The average simulation speed on Boston University’s SGI
Origin 2000 supercomputer was approximately 1€ per
particle update. Each of the state points we study requires 0.75 |
between 8 and 16 h on one processor, and thus over 1000 h
total computational time was utilized.

C. Constant-pressure simulation of the smooth potential o

In order to check that our results are not biased by such 0.25
problems as phase coexistence, which can affect constant-
volume simulations, we also perform constant-pressure
simulations in the case of the smooth potential. Constant-
pressure simulations allow us to determine more accurately

the locations of the freezing line and the density maximum. ~0.25 . . ‘
We use the feedback method proposed by Broughiéih 0.6 0.7 0.8 0.9
where the dimensions of the box and the positions of the T

particles are rescaled to obtain the desired presBurghe
amount of rescaling depends on the difference between thc‘ﬁs
present pressurg(t) and the desired pressuire

Using the Broughton method and the Berendsen metho
we gradually drive the system to the desifeéndT, while
simulating under readjusting andE conditions. We choose
pressure and temperature toleranéBsand 5T less than 1%

\(/)vfitmr? tﬂ?:;endp dr?ﬂd(s;' ;g(f f glg 3vr;>ds-l;<()t) tLeeé;(ri?al\i/;f!lltji?; corresponds to the minima along constant-volume pafhs (
gem = o P versusT graphs of Fig. B since for any thermodynamic

and pressurization. If the system stays within these limits for uantity X
an interval of time of the same order of time needed to reachi

the desired® and T, we conclude that the system has equili- (

FIG. 3. Isochores for the smooth potentifft pane) and the
crete potentiafright pane).

%ands upon cooling. Figure 2 shows a set of different isobars
for the smooth potential. Thgyq line corresponds to the set
of maxima along those isobars.

In the case of constant-volume simulations, Thg, line

brated, turn off the thermalization and pressurization, and
start collecting data. During this collection period, we moni-
tor temperature and pressure to check that their average val-
ues coincide with the desired ones within an accuracy of 1%By substitutingX= P, we find

For our results, the timA&t needed to reach equilibrium is

usually of the order of 500000 step#, so At~5000 in P\ ap 6
Lennard-Jones units. Data are acquired over a period of aT v_K_T’ 6)
10At. We test our code by simulating a Lennard-Jones sys-

tem of 2304 disks and comparing the results with the previynere

ously known phase diagram of a 2D Lennard-Jones system.

IX IX\  (aXIaP)r(aVIIT)p
(5, - ®
% P

T (VIaP);

oV
IV. DENSITY ANOMALY ap=V 1(ﬁ> (7)
P

The temperature of density maximuri,f) line is the
border of the region in th®-T plane where the liquid ex- is the thermal expansion coefficient and
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FIG. 4. Radial distribution function at high and low tempera-
tures, along the®=0.48 isobar for the smooth potential. Notice Q:e0 L Hﬁj-gg
how, by loweringT, long-range correlations develgg(r)=1 if ‘\ o
particles at distance are uncorrelateldand more particles are ex- 055 | \
pelled from inside the soft core~1.1 into the attractive well & \
r~1.5(inse). As the average interparticle distance is growing upon *“Hr,_[ e
cooling, the system is expanding and there is hence a density 0:50 ""““F‘\O\.'\\\:
anomaly. ]
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T
is the isothermal compressibility. Taking a derivative of Eq. _
(5), usingap=0 at theTy line, we find FIG. 5. Phases for the core-softened moa@ehooth potential
' P Md ' The upper panel shows a snapshot of the liquid phase and snapshots
2P V-L(g2V/gT2 of different types of crystals for the solid phase at low pressures
( ) _ ( )P_ (9) where the freezing line is negatively sloped, and at high pressures
aT? v Kt where the freezing line is positively sloped. Lower panel shows the

density jumps along isobars; note that the low-pressure isobar

Equations(6) and (9) show that sincé; is always posi- shows a density anomaly before jumping to a low-density solid.
tive and finite for systems in equilibrium not at a critical i ) i
point, a minimum along the isochore is equivalent to a mini- For a few state pomt_s near the freezmg_ Ilne,_ we have
mum along an isobar, which is the density maximum poimchecked our resu!ts by S|mulat|r_ng= 2500 particles in r_ect—
Tyuq. Figure 3 shows the isochores for the smooth and th@ngular boxes with aspect ratig3/2 (L,=+3/2L,, with
discrete potentials. L, X LyELg) which accommodate triangular lattices per-

To confirm that we are investigating the liquid state part
of the phase diagram, we introduce a criterion to distinguish
the liquid state from a frozen state. We determine the freez- .
ing line as the location of points where isochores overlap. In 07t heating
this way, we establish an approximate location for the freez-
ing line. Crossing this line from the liquid side, we find a
sharp decrease in diffusivitl) coinciding with the appear-
ance of slowly decaying peaks o(r) as a function ofr,
which signals the build up of long-range correlatigifsg.

4), which is a characteristic of 2D solids.

We confirm the above criterion adopted to locate the
freezing lines by using isobaric simulations for the smooth
potential. Indeed, they show a sharp change of density, in
correspondence with the estimated freezing line at high pres- 0.5

P=2.0

~O—
O~

cooling

sures(Fig. 5, lower pangl The presence of a hysteresis loop 0.3 0.5 O'i'7 0.9 1.1
(Fig. 6) suggests that the liquid-solid transition is first order;
however, by lowering the pressure, the loops become less FIG. 6. Hysteresis loop near the freezing line for a high-pressure

and less pronounced and eventually disappear, eliminatingobar (smooth potential The continuous line is obtained upon
the possibility of a hexatic second-order transitjas]. heating, the dashed line upon cooling.
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FIG. 8. Sketch of the phase diagram of water. The portion of the
Twq line that is to the left of the melting line corresponds to experi-
0:5 /f‘ ments in the supercooled region of water. Notice that the presence
PMD Va of a density anomaly in the region of the negatively sloped melting
&, 03 JPRR TN A ] line can occur in the metastable phase of the liquid. Data are ob-
. A K tained from Ref[2].
0.1 Ty i,/ TN ]
P apx B{5V5S). (20
[
-0.1 ¢ . Y 1
Freezin . N .
line 9 ¢ Approaching a freezing line, we expect local-density fluc-
03 tuations to have structures similar to the neighboring solid as

s 0.6 0.7 T 0.8 02 1 they are going to trigger the liquid-solid transition. On the
other hand, the Clausius-Clapeyron relation for the slope of

FIG. 7. Phase diagram with tfi&g, Pyp, Kr_, and freezing the freezing line
line for the smooth potentidleft pane) and discrete potentidtight
pane). d_P - ﬁ (1)
dT AV
fectly. This eliminates any possible artificial hindrance in.

crystallization that may arise from the asymmetry imposedmpIies that, if the freezing line Is negatiyely slo_ped, the
by the shape of the square box. solid, which has a lower entropy than the liquid, will have a

For water, the locus of th@ line in the P-T phase higher specific volume. Therefore, if the fluctuations in the

diagram is of special interest to distinguish between di1‘ferenliquidt_are “solidlike,” ap [Eq. (10)] will turn out to be
scenarios proposed to explain its anoma]ied-19. In Fig. negatve. . . -

7. we see that th@,,q line changes from negative slope at To distinguish different local structures in the liquid, we
hi,gh pressures to positive slope at low pressures. ThiQIOt the radial distributio_n functiog(r) for different pres-
change in slope is similar to what is observed in simulatingsures and.temperaturéslg. 4. As expected, at IO\.N pres-
model potentials of water like SPC/E or ST7,20]. These sures cooling expels particles from the core, while increasing

results suggest that the change in slope can be a gener%ﬂessure at fixed temperature has the opposite effect.

phenomenon stemming from the general core-softened form Slncg our system Is tvx'/o-d.lr'nens.lonal, We can use visual
of the interaction in the simulation. inspection to develop an intuitive picture of the possible lo-

cal structuregFig. 5, upper pangl If the fluctuations in the
liquid are “solidlike,” near the freezing line we expect to

V. STRUCTURES IN THE LIQUID AND SOLID PHASES seﬁdlocal structures that resemble the structure of the nearby
solid.

Figure 5(upper panglshows the different phases of the  We find that at lowP andT, the system is frozen with a
system. In our simulations, we see that thgy line is lo-  hexagonal structuré-ig. 9, lower left panel A “snapshot”
cated in the region of pressures where the freezing line isf the system along the same isobaric lig&y. 9, lower right
negatively sloped, as in water. A density anomaly and gane) shows clearly that local patches with hexagonal order
negatively sloped melting line are often associatd@®1].  are present in the liquid phase near the freezing line. We will
This has proven to be the case for substances like Wligr refer to this structure as the “open structure.” Similarly, at
8) and tellurium[5] and for some computer moddl$2,22.  high pressures the local patches in the liquid phase near the
This association is plausible since the isobaric thermal exfreezing line(Fig. 9, upper right panglresemble the struc-
pansion coefficientyp is related to the cross fluctuations in ture of the system when it is frozen at Iohand highP (Fig.
volume and entropy as 9, upper left panel We will refer to this as the “dense

041202-5
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FIG. 9. Snapshots of the systdudiscrete potentialin the solid adl ettt .
phase at high pressufepper lef) and low pressurélower left), a ’ ol 4 N
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and in the liquid phase at high pressuovgper righi and low pres- « (AT o060
sure (lower righ). Moving along an isobar, patches of local order | A“ R mT-062 |
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similar to the low-temperature solid develop. At high pressure, the L o . 06
average distance between particlesich is the radius of the digk } ;--F...'-\ e T=067
is of the order of the hard core, while in the low-pressure solid, the P fﬁ‘ “u iy
distance between particles is larger, of the order of the softened Bidi e ‘
core. 7-0.30 0.10 0.50 0.90

P
structure.” For the open structures, each particle has six

Eelrg]_:]hbors S|tt|r?g |rf1fthg deepestfwellr,] and thel SOfter?eddcorﬁnuous potentialleft pane) and the discrete potentiglight pane)
ehaves as the effective core for the particles. The en%ﬁong various isotherms. Lines are intended as a guide for the eye.

structure is the next ene_rgetically favorable local arrangengtice the anomalous sections of the graph, whe/¢P);>0.
ment, with four neighbors in the external well and four in the

softened core, for which the effective core is the hard core,

FIG. 10. Diffusion coefficienD in the liquid phase for the con-

constrained. As a result, the viscosity increases and hence
decreases. In the case of water, the anomaly can be related to
VI. DIFFUSION ANOMALY the fact that increasing pressui@nd hence densifybreaks
e S hydrogen bonds, which in turn increases the mobility of the
We next study the diffusion anomaly, which is another yerog ! Y

sing feat f water. While f t materials diff molecules. We present a more general explanation that can
surprising teature o water. ie for most materiais dittu- apply equally to our radially symmetric core-softened inter-

tgction, which does not possess any directional bonds similar
to hydrogen bonds. The low-energy interparticle state at
) plays the role of nondirectional bond. Note tHatis
rTﬂ)roportional to the mean free path of particles, which in-
ecreases with the free volume per partialgee=v — vy,
C\??{herevex is the excluded volume per particle resulting from
fhe effective hard core. At low temperatures,, for the
dense structure is proportional to the aaéaf the hard core,
while for the open structure it is proportional to the abéa
2 of the soft core. Increasing decreases, which is the main
1 (Ar<(t)) ; e  INe
D= — lim——2~_ (12)  effect in normal liquids. For the core-softened liquid, on the
2d . t other hand, increasing can also decrease,, by transform-
ing some of local open structures to dense structures. Since
We measurdAr?(t)) by averaging over the starting tinhg ~ both Av and Av,, decrease withP? and sinceAve.=Av
in Eq. (12). We find that there is a region of the phase dia-—Av,y, the effect ofP on D depends on whethekv or
gram in whichD increases upon increasiiy(Fig. 10. Ave, dominates. The anomalous increas®ialong the iso-
In order to understand the diffusion anomaly, we first notetherms near the freezing line is a sign of the dominance of
that, for normal liquidsD decreases withP because upon theAv, term. Thus the anomaly iD must disappear near a
increasingP the density increases and molecules are moreertain pressure above which the average distance between

behavior in a large region of the phase diagi@h(Fig. 8.
The pressures where the system has a maximum diffusivit
along isotherms define the line of the pressure of maximu
diffusivity, Pyp -

We observe that our core-softened potential reproduc
this anomaly. We first measure the mean-square displa
ment{Ar?(t))={([r(t+1to) —r(ty)]?) and then the diffusion
coefficient using the relation

041202-6
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FIG. 12. Isothermal compressibility along isobars for the con-

FIG. 11. Averaged pair distribution function for the smooth po- tinuous potential(left pane) and for the discrete potentiafight
tential at P=1.0T=0.7 (upper panél The structure function Panel, computed directly from the numerical valuesRfV,T).
(lower pane), multiplied by the factor kg T, derived by integrat-
ing g(r), wherekg is the Boltzmann constant. Thee—0 limit of
this function givesKy, which is around 0.1 in this case. We first calculatey(r) for each state point averaging over

all thermalized configurations. We then perform numerical
particles corresponds to the dense structure, and as a reshitegration using Eq(14) to find S(q), and finally we ex-
the contribution of the open structure #tQ, is negligible. trapolateS(q) to q=0 and substitute in Eq13) to find K.

We verified this in our simulation by observing a corre- We show an example of the graphs &fr) and the resulting
spondence between the disappearance of the diffusiog(q) [normalized by the extra factors in EG.3)] in Fig. 11.
anomaly and the disappearance of the peal(ir), corre-  From the lowq tail of the curve, we find the limiting value
sponding to the open structure that is observed in real wategsing Eq.(13).

We graphK along isobars, as shown in Fig. 12. For large
VIl. ISOTHERMAL COMPRESSIBILITY T, the K1 decreases upon increasiRgFor smallT, the be-
havior is the opposite and the compressibility anomaly oc-

In order to investigate the anomaly in isothermal com-crs. As seen for all isobars shown in Fig. l&cept a

data in Fig. 3. In the smooth potential case, we verify these

results using

S(q)
kT (13 VIIl. PHASE DIAGRAM

KT: I|m
q—0
In water, theTyq line is negatively sloped for positive
as an alternative methd@3], wheren is the number density pressures. For several models that mimic water behavior, it is
of the system an&(q) is the structure function and is related found that theT 4 line has a reentrant shape, changing slope
to the pair correlation function via at low or negative pressur¢3]. In our simulations, we find
such a reentranty line; the change of slope of thg,
_ ig-x happens at positive pressures in the smooth version and at
S(q)=1+ nj e g(xdx. (14 negative pressures in the discrete cdsg. 7).
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Moreover, we have graphed the location of the minimum IX. SUMMARY
K+ point along each isobar; the locus of these points is called We find that core-softened potentials reproduce the quali-

the minimum compressibility lineKr_ ). Sastry and €o- o4ive pehavior of water in many respects: in particular, the
workers[18], from basic thermodynamic arguments, showliquid phase of core-softened potentials can show both ther-
that (i) the Ky line intersects theTyy line at its infinite. modynamic anomalies and dynamic anomalies. Moreover, as
slope point, andii) the compressibility must increase upon in real water, the freezing line changes slope from a positive
cooling in the region to the left of a negatively slopggy  Value at high pressures to a negative value at low pressures
line. Our results are in agreement with both of these statell the P-T phase diagram and more than one solid phase is
ments(Fig. 7). present. T_he poI_ym_orphlsm of the solid phase and_ Fhe
Theories relatingd to the entropy[24] predict that the anomahes in the liquid phase can be related to the pOSSIbIlllty
anomalous behaviordD/aP)+>0 is related to an anomaly of different chal structures dqe to the shape of the potent!al.
in the entropy §S/9P):>0. Due to the Maxwell relation TP'[T] phase dl?tgrarrés 0‘; ths ?lscret_e ﬁndtthﬁlsr?oth Iverst|ons
(3S/9P)1=— (aV/dT)», whenever there is a density O e core-softened potential are similar to that of real water,

anomaly, an entropy anomaly occurs, and the value of ent_)ut theTyq line is shifted into liquid phase and tlh@rmm line

tropy along isotherms reaches a maximum atEqg, line. has a smaller slope. Only for the discrete potential do we find

In Fig. 7, we also show thBy,p line whereD reaches its & Pup line with a negative slope.
maximum with pressure. Notice that, for the continuous po-
tential, the maximum iD shifts to higherP with increasing ACKNOWLEDGMENTS
T. This trend is also observed in the SPC/E model of water \ye thank D. Wolf, R. Speedy, F. Sciortino, M. Canpolat,
[25] but is in contrast with the behavior of real watgig.  F. w. Starr, E. La Nave, M. Meyer, A. Skibinsky, and G.
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